
Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 1 -

Maps and Hash Tables

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 2 -

Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 3 -

Learning Outcomes
Ø By understanding this lecture, you should be able to:

Ø Outline the ADT for a map and a multimap

Ø Identify applications for which maps, multimaps and ordered maps are
appropriate

Ø Design and implement a map in java and verify that it satisfies the
requirements of the map ADT

Ø Explain the purpose of hash tables

Ø Design and implement hashing methods using separate chaining or open
addressing and a variety of hashing and double-hashing functions

Ø Specify worst-case and average-case asymptotic run-times for standard
operations on maps based upon hash tables

Ø Specify (worst-case) asymptotic run-times for standard operations on sorted
maps

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 4 -

Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps

Last Updated: February 12, 2018
EECS 2011

Prof. J. Elder
- 5 -

Maps

Ø A map models a searchable collection of key-value
entries

Ø The main operations of a map are for searching,
inserting, and deleting items

Ø Multiple entries with the same key are not allowed

Ø Applications:

q address book

q student-record database

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 6 -

The Map ADT (in java.util)

Ø Map ADT methods:
q get(k): if the map M has an entry with key k, return its associated

value; else, return null

q put(k, v): insert entry (k, v) into the map M; if key k is not already
in M, then return null; else, return old value associated with k

q remove(k): if the map M has an entry with key k, remove it from
M and return its associated value; else, return null

q size(), isEmpty()

q entrySet(): returns an iterable collection of the entries in M

q keySet(): return an iterable collection of the keys in M

q values(): return an iterable collection of the values in M

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 7 -

Example
Operation Output M
isEmpty() true Ø
put(5,A) null (5,A)
put(7,B) null (5,A),(7,B)
put(2,C) null (5,A),(7,B),(2,C)
put(8,D) null (5,A),(7,B),(2,C),(8,D)
put(2,E) C (5,A),(7,B),(2,E),(8,D)
get(7) B (5,A),(7,B),(2,E),(8,D)
get(4) null (5,A),(7,B),(2,E),(8,D)
get(2) E (5,A),(7,B),(2,E),(8,D)
size() 4 (5,A),(7,B),(2,E),(8,D)
remove(5) A (7,B),(2,E),(8,D)
remove(2) E (7,B),(8,D)
get(2) null (7,B),(8,D)
isEmpty() false (7,B),(8,D)

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 8 -

A Simple List-Based Map

ØWe could implement a map using an
unsorted list
qWe store the entries of the map in a doubly-linked

list S, in arbitrary order

trailerheader nodes/positions

entries

9 c 6 b 5 a 8 d

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 9 -

The get(k) Algorithm

Algorithm get(k):

B = S.positions() {B is an iterator of the positions in S}

while B.hasNext() do
p = B.next() {the next position in B}

if p.element().getKey() = k then
return p.element().getValue()

return null {there is no entry with key equal to k}

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 10 -

The put(k,v) Algorithm

Algorithm put(k,v):
B = S.positions()
while B.hasNext() do

p = B.next()
if p.element().getKey() = k then

t = p.element().getValue()
S.set(p,(k,v))
return t {return the old value}

S.addLast((k,v))
n = n + 1 {increment variable storing number of entries}
return null {there was no previous entry with key equal to k}

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 11 -

The remove(k) Algorithm

Algorithm remove(k):
B =S.positions()
while B.hasNext() do

p = B.next()
if p.element().getKey() = k then

t = p.element().getValue()
S.remove(p)
n = n – 1 {decrement number of entries}
return t {return the removed value}

return null {there is no entry with key equal to k}

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 12 -

Performance of a List-Based Map

Ø Performance:
q put, get and remove take O(n) time since in the worst case

(the item is not found) we traverse the entire sequence to
look for an item with the given key

Ø The unsorted list implementation is effective only for
small maps

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 13 -

Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 14 -

Hash Tables

Ø A hash table is a data structure that can be used to
make map operations faster.

Ø While worst-case is still O(n), average case is typically
O(1).

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder

- 15 -

Applications of Hash Tables

Ø Databases

Ø Caches

Ø Programming languages

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 16 -

Hash Functions and Hash Tables
Ø A hash function h maps keys of a given type to integers

in a fixed interval [0, N - 1]

Ø Example:
h(k) = k mod N

is a hash function for integer keys

Ø The integer h(k) is called the hash value of key k

Ø A hash table for a given key type consists of

qHash function h

qArray (called table) of size N

Ø When implementing a map with a hash table, the goal
is to store item (k, v) at index i = h(k)

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 17 -

Example

Ø We design a hash table for
a map storing entries as
(SIN, Name), where SIN
(social insurance number) is
a nine-digit positive integer

Ø Our hash table uses an
array of size N = 1,000 and
the hash function
h(k) = last three digits of SIN
k

Ø Problem: what happens if
two entries have the same last
three digits?

Ø

Ø

Ø

Ø

0
1
2
3
4

997
998
999

…

451-229-004

981-101-002

200-751-998

025-612-001

Last Updated: February 12, 2018
EECS 2011

Prof. J. Elder
- 18 -

Hash Functions

Ø A hash function is usually specified as the composition of
two functions:

Hash code:
h1: keys è integers

Compression function:
h2: integers è [0, N - 1]

Ø The hash code is applied first, and the compression
function is applied next on the result, i.e.,

h(k) = h2(h1(k))

Ø The goal of the hash function is to “disperse” the keys in
an apparently random way

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 19 -

Hash Codes
Ø Memory address:

q We reinterpret the memory address of the key object as an integer
(default hash code of all Java objects)

q Does not work well when copies of the same object may be stored at
different locations.

Ø Integer cast:
q We reinterpret the bits of the key as an integer

q Suitable for keys of length less than or equal to the number of bits of
the integer type (e.g., byte, short, int and float in Java)

Ø Component sum:
q We partition the bits of the key into components of fixed length (e.g.,

16 or 32 bits) and we sum the components (ignoring overflows)

q Suitable for keys of fixed length greater than or equal to the number
of bits of the integer type (e.g., long and double in Java)

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 20 -

Problems with Component Sum Hash Codes

Ø Hashing works when
q the number of commonly-occurring keys is small relative to the

hashing space (e.g., 232 for a 32-bit hash code).

q the hash codes for commonly-occurring keys are well-distributed
(do not collide) in this space.

Ø Component Sum codes ignore the ordering of the
components.
q e.g., using 8-bit ASCII components, ‘stop’ and ‘pots’ yields the

same code.

Ø If commonly-occuring keys are anagrams of each other,
this is a bad idea!

Last Updated: February 12, 2018
EECS 2011

Prof. J. Elder
- 21 -

Polynomial Hash Codes

Ø Polynomial accumulation:

q We partition the bits of the key into a sequence of components of fixed
length (e.g., 8, 16 or 32 bits)

a0 a1 … an-1

q We evaluate the polynomial

p(z) = a0 + a1 z + a2 z2 + … + an-1zn-1 at a fixed value z, ignoring overflows

q Especially suitable for strings

q Polynomial p(z) can be evaluated in O(n) time using Horner’s rule:

² The following polynomials are successively computed, each from the previous
one in O(1) time

p0(z) = an-1

pi (z) = an-i-1 + zpi-1(z) (i = 1, 2, …, n -1)
q We have p(z) = pn-1(z)

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 22 -

Compression Functions

Ø Division:
q h2 (y) = y mod N

q The size N of the hash table is usually chosen to be a prime (on
the assumption that the differences between hash keys y are
less likely to be multiples of primes).

Ø Multiply, Add and Divide (MAD):
q h2 (y) = [(ay + b) mod p] mod N, where

²p is a prime number greater than N

²a and b are integers chosen at random from the interval [0, p – 1],
with a > 0.

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 23 -

Collisions

Ø Collisions occur when different elements are mapped to
the same cell

Ø Example:
Ø Suppose h2 (y) = y mod N, where N = 13.

Ø y = 17 and y = 30 will hash to the same location (4).

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 24 -

Collision Handling

Ø Collisions occur when different elements are mapped to
the same cell

Ø Separate Chaining:
q Let each cell in the table point to a linked list of entries that map

there

q Separate chaining is simple, but requires additional memory
outside the table

Ø

Ø
Ø

0
1
2
3
4 451-229-004 981-101-004

025-612-001

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 25 -

Map Methods with Separate Chaining

ØDelegate operations to a list-based map at each
cell:

Algorithm get(k):
Output: The value associated with the key k in the map, or null if there is no

entry with key equal to k in the map

return A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]}

Last Updated: February 12, 2018
EECS 2011

Prof. J. Elder
- 26 -

Map Methods with Separate Chaining

ØDelegate operations to a list-based map at each
cell:

Algorithm put(k,v):
Output: Store the new (key, value) pair. If there is an existing entry with key

equal to k, return the old value; otherwise, return null
t = A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]}

if t = null then {k is a new key}

n = n + 1

return t

Last Updated: February 12, 2018
EECS 2011

Prof. J. Elder
- 27 -

Map Methods with Separate Chaining

ØDelegate operations to a list-based map at each
cell:

Algorithm remove(k):
Output: The (removed) value associated with key k in the map, or null if there

is no entry with key equal to k in the map

t = A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]}
if t ≠ null then {k was found}

n = n - 1

return t

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 28 -

Open Addressing: Linear Probing

Ø Open addressing: the colliding
item is placed in a different cell of
the table

Ø Linear probing handles collisions
by placing the colliding item in the
next (circularly) available table cell

Ø Each table cell inspected is
referred to as a “probe”

Ø Colliding items lump together, so
that future collisions cause a longer
sequence of probes

Ø Example:
q h(k) = k mod 13

q Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12
41 18 44 59 32 22 31 73

Last Updated: February 12, 2018
EECS 2011

Prof. J. Elder
- 29 -

Get with Linear Probing

Ø Consider a hash table A of
length N that uses linear
probing

Ø get(k)
q We start at cell h(k)

q We probe consecutive
locations until one of the
following occurs

²An item with key k is found,
or

²An empty cell is found, or

²N cells have been
unsuccessfully probed

Algorithm get(k)
iç h(k)
pç 0
repeat
cçA[i]
if c = Ø

return null
else if c.key () = k

return c.element()
else
iç (i + 1) mod N
pç p + 1

until p = N
return null

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 30 -

End of Lecture

Feb 13, 2018

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 31 -

Remove with Linear Probing

Ø Suppose we receive a remove(44)
message.

Ø What problem arises if we simply
remove the key = 44 entry?

Ø Example:

q h(k) = k mod 13

q Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12
41 18 44 59 32 22 31 73

k h(k) i
18 5 5

41 2 2

22 9 9

44 5 6

59 7 7

32 6 8

31 5 10

73 8 11

✗

Ø
ê

What happens now if we do a get(31)?

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 32 -

Removal with Linear Probing
Ø To address this problem, we introduce a special object, called

AVAILABLE , which replaces deleted elements

Ø AVAILABLE has a null key

Ø No changes to get(k) are required.

Algorithm get(k)
iç h(k)
pç 0
repeat
cç A[i]
if c = Ø

return null
else if c.key () = k

return c.element()
else
iç (i + 1) mod N
pç p + 1

until p = N
return null

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 33 -

Updates with Linear Probing
Ø remove(k)

q We search for an entry with key k

q If such an entry (k, v) is found, we replace it with the special item AVAILABLE and
we return value v

q Else, we return null

Ø put(k, v)
q We start at cell h(k) and then probe consecutive cells

q If we encounter a cell labeled AVAILABLE we note its index

q We continue probing until either

² A cell i is found that is empty or has key matching k

² N cells have been unsuccessfully probed

q If a cell has key matching k, we update the value for this cell to v

q Else if a cell labeled AVAILABLE was encountered we store entry (k, v) there.

q Else if an empty cell was encountered we store entry (k, v) there

q Else if N cells were probed unsuccessfully we throw an exception.

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder

- 34 -

Open Addressing: Double Hashing
Ø Double hashing is an alternative open addressing method that uses

a secondary hash function h’(k) in addition to the primary hash
function h(x).

Ø Suppose that the primary hashing i=h(k) leads to a collision.

Ø We then iteratively probe the locations
(i + jh’(k)) mod N for j = 0,1, … , N - 1

Ø The secondary hash function h’(k) cannot have zero values

Ø Choose N to be prime.

Ø Common choice of secondary hash function h’(k):
q h’(k) = q - k mod q, where

² q < N

² q is a prime

Ø The possible values for h’(k) are
1, 2, … , q

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 35 -

Open Addressing: Double Hashing
Ø Potential problem: depending upon the relative values of N and

h’(k), not all locations may be probed.

Ø Example: N = 12, h’(k) = 6. Suppose primary hash i = h(k) = 2.

Ø To avoid this problem, we need to ensure that none of the N probed
locations repeat, i.e., we require:

0 1 2 3 4 5 6 7 8 9 10 11
31 41 18 32 59 73 22 44

Probed Locations

! + #ℎ′(') mod , ≠ ! + #.ℎ. ' mod ,,where 0 ≤ # < #. < ,

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 36 -

Open Addressing: Double Hashing

Ø In other words, we require

Ø This will be true if h’(k) and N are relatively prime, i.e., share no common factors.

Ø We have ensured this by making N prime. However this has downsides:
q Modulo operations tend to be less efficient.

q Have to search for prime numbers

Ø More common to make N a power of 2.
q Makes modulo operations very efficient.

q No searching for special numbers required.

Ø Q: If N is a power of 2, how can we ensure that h’(k) and N are relatively prime?

Ø A: Make h’(k) odd!

!ℎ# $ ≠ &', ∀ !, & ∈ 1, 2, … , ' − 1,! ≠ &

/ + 1ℎ′($) mod ' ≠ / + 1#ℎ# $ mod ',where 0 ≤ 1 < 1# < '

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 37 -

Open Addressing: Double Hashing (Revised)

Ø Select N to be a power of 2.

Ø Let h’(k) be a random odd integer, 0 < h’(k) < N, e.g.,
q h’(k) = 2 * Random.nextInt(N/2) + 1,

where Rand.nextInt(n) generates a pseudo-random integer in the range 0…n-1.

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 38 -

Ø Consider a hash table
storing integer keys that
handles collision with
double hashing
q N = 13

q h(k) = k mod 13

q h’(k) = 7 - k mod 7

Ø Insert keys 18, 41, 22,
44, 59, 32, 31, 73

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12
31 41 18 32 59 73 22 44

k h(k) h'(k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 39 -

Ø Consider a hash table
storing integer keys that
handles collision with
double hashing
q N = 13

q h(k) = k mod 13

q h’(k) = 7 - k mod 7

Ø Insert keys 18, 41, 22,
44, 59, 32, 31, 73

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12
31 41 18 32 59 73 22 44

k h(k) h'(k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 40 -

Performance of Hashing
Ø In the worst case, searches, insertions and removals on a hash table

take O(n) time

Ø The worst case occurs when all the keys inserted into the map collide

Ø The load factor λ = n/N affects the performance of a hash table
q For separate chaining, performance is typically good for λ < 0.9.

q For open addressing , performance is typically good for λ < 0.5.

q java.util.HashMap maintains λ < 0.75

Ø Open addressing can be more memory efficient than separate chaining,
as we do not require a separate data structure.

Ø However, separate chaining is typically as fast or faster than open
addressing.

Last Updated: February 12, 2018
EECS 2011

Prof. J. Elder
- 41 -

Rehashing

Ø When the load factor λ exceeds threshold, the table must
be rehashed.

q A larger table is allocated (typically at least double the size).

q A new hash function is defined.

q All existing entries are copied to this new table using the new
hash function.

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 42 -

Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps

Last Updated: February 12, 2018
EECS 2011

Prof. J. Elder
- 43 -

Multimap ADT
Ø The Multimap ADT is identical to

the Map ADT, but allows
entries with the same key.

Ø Multimaps are also sometimes
known as dictionaries.

Ø As for maps, the main
operations are searching,
inserting, and deleting items

Ø Applications:

q word-definition pairs

Ø Dictionary ADT methods:

q get(k): if the dictionary has at
least one entry with key k,
returns one of them, else, returns
null

q getAll(k): returns an iterable
collection of all entries with key k

q put(k, v): inserts and returns the
entry (k, v)

q remove(e): removes and returns
the entry e. Throws an exception
if the entry is not in the
dictionary.

q entrySet(): returns an iterable
collection of the entries in the
dictionary

q size(), isEmpty()

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 44 -

Multimaps and Java

Ø Note: The java.util.Dictionary class actually implements
a map ADT.

Ø There is no multimap data structure in the Java
Collections Framework that supports multiple entries
with equal keys.

Ø The textbook (Ch. 10.5.3) sketches an implementation of
a multimap based upon a map of keys, each entry of
which supports a List of entries with the same key.
q Note: There are some errors in the textbook java

implementation of the multimap – please ignore Code Fragment
10.17.

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 45 -

Example
Operation Output Dictionary
put(5,A) (5,A) (5,A)
put(7,B) (7,B) (5,A),(7,B)
put(2,C) (2,C) (5,A),(7,B),(2,C)
put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
get(7) (7,B) (5,A),(7,B),(2,C),(8,D),(2,E)
get(4) null (5,A),(7,B),(2,C),(8,D),(2,E)
get(2) (2,C) (5,A),(7,B),(2,C),(8,D),(2,E)
getAll(2) (2,C),(2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
size() 5 (5,A),(7,B),(2,C),(8,D),(2,E)
remove(get(5)) (5,A) (7,B),(2,C),(8,D),(2,E)
get(5) null (7,B),(2,C),(8,D),(2,E)

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 46 -

Subtleties of remove(e)
Ø remove(e) will remove an entry that matches e (i.e., has

the same (key, value) pair).

Ø If the dictionary contains more than one entry with
identical (key, value) pairs, remove(e) will only remove
one.

Ø Example:
Operation Output Dictionary
e1 = put(2,C) (2,C) (5,A),(7,B),(2,C)
e2 = put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
e3 = put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
remove(get(5)) (5,A) (7,B),(2,C),(8,D),(2,E)
remove(e3) (2,E) (7,B),(2,C),(8,D)
remove(e1) (2,C) (7,B),(8,D)

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 47 -

A List-Based Multi-Map (Dictionary)

Ø A log file or audit trail is a dictionary implemented by means of an
unsorted sequence

q We store the items of the dictionary in a sequence (based on a doubly-
linked list or array), in arbitrary order

Ø Performance:

q insert takes O(1) time since we can insert the new item at the beginning or
at the end of the sequence

q find and remove take O(n) time since in the worst case (the item is not
found) we traverse the entire sequence to look for an item with the given
key

Ø The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common operations, while
searches and removals are rarely performed (e.g., historical record of
logins to a workstation)

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 48 -

Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 49 -

Ordered Maps and Dictionaries
Ø If keys obey a total order relation, can represent a map or

dictionary as an ordered search table stored in an array.

Ø Can then support a fast find(k) using binary search.
q at each step, the number of candidate items is halved

q terminates after a logarithmic number of steps

q Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder

- 50 -

Ordered Search Tables
Ø Performance:

q find takes O(log n) time, using binary search

q insert takes O(n) time since in the worst case we have to shift n
items to make room for the new item

q remove takes O(n) time since in the worst case we have to shift n
items to compact the items after the removal

Ø A search table is effective only for dictionaries of small size or
for dictionaries on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 51 -

Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps

Last Updated: February 12, 2018
EECS 2011
Prof. J. Elder - 52 -

Learning Outcomes
By understanding this lecture, you should be able to:

Ø Outline the ADT for a map and a multimap

Ø Identify applications for which maps, multimaps and ordered maps are
appropriate

Ø Design and implement a map in java and verify that it satisfies the
requirements of the map ADT

Ø Explain the purpose of hash tables

Ø Design and implement hashing methods using separate chaining or open
addressing and a variety of hashing and double-hashing functions

Ø Specify worst-case and average-case asymptotic run-times for standard
operations on maps based upon hash tables

Ø Specify (worst-case) asymptotic run-times for standard operations on sorted
maps

