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Learning Outcomes
Ø By understanding this lecture, you should be able to:

Ø Outline the ADT for a map and a multimap

Ø Identify applications for which maps, multimaps and ordered maps are 
appropriate

Ø Design and implement a map in java and verify that it satisfies the 
requirements of the map ADT

Ø Explain the purpose of hash tables

Ø Design and implement hashing methods using separate chaining or open 
addressing and a variety of hashing and double-hashing functions

Ø Specify worst-case and average-case asymptotic run-times for standard 
operations on maps based upon hash tables

Ø Specify (worst-case) asymptotic run-times for standard operations on sorted 
maps
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Maps

Ø A map models a searchable collection of key-value 
entries

Ø The main operations of a map are for searching, 
inserting, and deleting items

Ø Multiple entries with the same key are not allowed

Ø Applications:

q address book

q student-record database
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The Map ADT (in java.util) 

Ø Map ADT methods:
q get(k): if the map M has an entry with key k, return its associated 

value; else, return null 

q put(k, v): insert entry (k, v) into the map M; if key k is not already 
in M, then return null; else, return old value associated with k

q remove(k): if the map M has an entry with key k, remove it from 
M and return its associated value; else, return null 

q size(), isEmpty()

q entrySet():  returns an iterable collection of the entries in M

q keySet(): return an iterable collection of the keys in M

q values(): return an iterable collection of the values in M
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Example
Operation Output M
isEmpty() true Ø
put(5,A) null (5,A)
put(7,B) null (5,A),(7,B)
put(2,C) null (5,A),(7,B),(2,C)
put(8,D) null (5,A),(7,B),(2,C),(8,D)
put(2,E) C (5,A),(7,B),(2,E),(8,D)
get(7) B (5,A),(7,B),(2,E),(8,D)
get(4) null (5,A),(7,B),(2,E),(8,D)
get(2) E (5,A),(7,B),(2,E),(8,D)
size() 4 (5,A),(7,B),(2,E),(8,D)
remove(5) A (7,B),(2,E),(8,D)
remove(2) E (7,B),(8,D)
get(2) null (7,B),(8,D)
isEmpty() false (7,B),(8,D)
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A Simple List-Based Map

ØWe could implement a map using an 
unsorted list 
qWe store the entries of the map in a doubly-linked 

list S, in arbitrary order

trailerheader nodes/positions

entries

9 c 6 b 5 a 8 d
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The get(k) Algorithm

Algorithm get(k):

B = S.positions() {B is an iterator of the positions in S}

while B.hasNext() do
p = B.next() {the next position in B}

if p.element().getKey() = k then
return p.element().getValue()

return null {there is no entry with key equal to k}
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The put(k,v) Algorithm

Algorithm put(k,v):
B = S.positions()
while B.hasNext() do

p = B.next()
if p.element().getKey() = k  then

t = p.element().getValue()
S.set(p,(k,v))
return t {return the old value}

S.addLast((k,v))
n = n + 1 {increment variable storing number of entries}
return null {there was no previous entry with key equal to k}
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The remove(k) Algorithm

Algorithm remove(k):
B =S.positions()
while B.hasNext() do

p = B.next()
if p.element().getKey() = k  then

t = p.element().getValue()
S.remove(p)
n = n – 1 {decrement number of entries}
return t {return the removed value}

return null {there is no entry with key equal to k}
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Performance of a List-Based Map

Ø Performance:
q put, get and remove take O(n) time since in the worst case 

(the item is not found) we traverse the entire sequence to 
look for an item with the given key

Ø The unsorted list implementation is effective only for 
small maps 
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Hash Tables

Ø A hash table is a data structure that can be used to 
make map operations faster.

Ø While worst-case is still O(n), average case is typically 
O(1).
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Applications of Hash Tables

Ø Databases

Ø Caches

Ø Programming languages
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Hash Functions and Hash Tables 
Ø A hash function h maps keys of a given type to integers 

in a fixed interval [0, N - 1]

Ø Example:
h(k) = k mod N

is a hash function for integer keys

Ø The integer h(k) is called the hash value of key k

Ø A hash table for a given key type consists of

qHash function h

qArray (called table) of size N

Ø When implementing a map with a hash table, the goal 
is to store item (k, v) at index i = h(k)
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Example

Ø We design a hash table for 
a map storing entries as 
(SIN, Name), where SIN 
(social insurance number) is 
a nine-digit positive integer

Ø Our hash table uses an 
array of size N = 1,000 and 
the hash function
h(k) = last three digits of SIN 
k

Ø Problem: what happens if 
two entries have the same last 
three digits?

Ø

Ø

Ø

Ø

0
1
2
3
4

997
998
999

…

451-229-004

981-101-002

200-751-998

025-612-001
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Hash Functions 

Ø A hash function is usually specified as the composition of 
two functions:

Hash code:
h1: keys è integers

Compression function:
h2: integers è [0, N - 1]

Ø The hash code is applied first, and the compression 
function is applied next on the result, i.e., 

h(k) = h2(h1(k))

Ø The goal of the hash function is to  “disperse” the keys in 
an apparently random way
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Hash Codes 
Ø Memory address:

q We reinterpret the memory address of the key object as an integer 
(default hash code of all Java objects)

q Does not work well when copies of the same object may be stored at 
different locations.

Ø Integer cast:
q We reinterpret the bits of the key as an integer

q Suitable for keys of length less than or equal to the number of bits of 
the integer type (e.g., byte, short, int and float in Java)

Ø Component sum:
q We partition the bits of the key into components of fixed length (e.g., 

16 or 32 bits) and we sum the components (ignoring overflows)

q Suitable for keys of fixed length greater than or equal to the number 
of bits of the integer type (e.g., long and double in Java)
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Problems with Component Sum Hash Codes

Ø Hashing works when
q the number of commonly-occurring keys is small relative to the 

hashing space (e.g., 232 for a 32-bit hash code).

q the hash codes for commonly-occurring keys are well-distributed 
(do not collide) in this space.

Ø Component Sum codes ignore the ordering of the 
components.
q e.g., using 8-bit ASCII components, ‘stop’ and ‘pots’ yields the 

same code.

Ø If commonly-occuring keys are anagrams of each other, 
this is a bad idea!
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Polynomial Hash Codes

Ø Polynomial accumulation:

q We partition the bits of the key into a sequence of components of fixed 
length (e.g., 8, 16 or 32 bits)

a0 a1 … an-1

q We evaluate the polynomial

p(z) = a0 + a1 z + a2 z2 + … + an-1zn-1 at a fixed value z, ignoring overflows

q Especially suitable for strings 

q Polynomial p(z) can be evaluated in O(n) time using Horner’s rule:

² The following polynomials are successively computed, each from the previous 
one in O(1) time

p0(z) = an-1

pi (z) = an-i-1 + zpi-1(z)  (i = 1, 2, …, n -1)
q We have p(z) = pn-1(z) 
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Compression Functions 

Ø Division:
q h2 (y) = y mod N

q The size N of the hash table is usually chosen to be a prime (on 
the assumption that the differences between hash keys y are 
less likely to be multiples of primes).

Ø Multiply, Add and Divide (MAD):
q h2 (y) = [(ay + b) mod p] mod N, where

²p is a prime number greater than N

²a and b are integers chosen at random from the interval [0, p – 1], 
with a > 0.
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Collisions

Ø Collisions occur when different elements are mapped to 
the same cell

Ø Example:
Ø Suppose h2 (y) = y mod N, where N = 13.

Ø y = 17 and y = 30 will hash to the same location (4).
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Collision Handling 

Ø Collisions occur when different elements are mapped to 
the same cell

Ø Separate Chaining:  
q Let each cell in the table point to a linked list of entries that map 

there

q Separate chaining is simple, but requires additional memory 
outside the table

Ø

Ø
Ø

0
1
2
3
4 451-229-004 981-101-004

025-612-001
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Map Methods with Separate Chaining 

ØDelegate operations to a list-based map at each 
cell:

Algorithm get(k):
Output: The value associated with the key k in the map, or null if there is no 

entry with key equal to k in the map

return A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]}
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Map Methods with Separate Chaining 

ØDelegate operations to a list-based map at each 
cell:

Algorithm put(k,v):
Output: Store the new (key, value) pair.  If there is an existing entry with key 

equal to k, return the old value; otherwise, return null
t = A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]}

if t = null then {k is a new key}

n = n + 1

return t
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Map Methods with Separate Chaining 

ØDelegate operations to a list-based map at each 
cell:

Algorithm remove(k):
Output: The (removed) value associated with key k in the map, or null if there

is no entry with key equal to k in the map

t = A[h(k)].remove(k)       {delegate the remove to the list-based map at A[h(k)]}
if t ≠ null then {k was found}

n = n - 1

return t
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Open Addressing: Linear Probing

Ø Open addressing: the colliding 
item is placed in a different cell of 
the table

Ø Linear probing handles collisions 
by placing the colliding item in the 
next (circularly) available table cell

Ø Each table cell inspected is 
referred to as a “probe”

Ø Colliding items lump together, so 
that future collisions cause a longer 
sequence of probes

Ø Example:
q h(k) = k mod 13

q Insert keys 18, 41, 22, 44, 
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12
41 18 44 59 32 22 31 73
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Get with Linear Probing

Ø Consider a hash table A of 
length N that uses linear 
probing

Ø get(k)
q We start at cell h(k) 

q We probe consecutive 
locations until one of the 
following occurs

²An item with key k is found, 
or

²An empty cell is found, or

²N cells have been 
unsuccessfully probed 

Algorithm get(k)
iç h(k)
pç 0
repeat
cçA[i]
if c = Ø

return null
else if c.key () = k

return c.element()
else
iç (i + 1) mod N
pç p + 1

until p = N
return null
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End of Lecture

Feb 13, 2018
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Remove with Linear Probing

Ø Suppose we receive a remove(44) 
message.

Ø What problem arises if we simply 
remove the key = 44 entry?

Ø Example:

q h(k) = k mod 13

q Insert keys 18, 41, 22, 44, 
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12
41 18 44 59 32 22 31 73

k h(k) i
18 5 5

41 2 2

22 9 9

44 5 6

59 7 7

32 6 8

31 5 10

73 8 11

✗

Ø
ê

What happens now if we do a get(31)?
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Removal with Linear Probing
Ø To address this problem, we introduce a special object, called 

AVAILABLE , which replaces deleted elements

Ø AVAILABLE has a null key

Ø No changes to get(k) are required.

Algorithm get(k)
iç h(k)
pç 0
repeat
cç A[i]
if c = Ø

return null
else if c.key () = k

return c.element()
else
iç (i + 1) mod N
pç p + 1

until p = N
return null
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Updates with Linear Probing
Ø remove(k)

q We search for an entry with key k

q If such an entry (k, v) is found, we replace it with the special item AVAILABLE and 
we return value v

q Else, we return null

Ø put(k, v)
q We start at cell h(k) and then probe consecutive cells

q If we encounter a cell labeled AVAILABLE we note its index

q We continue probing until either

² A cell i is found that is empty or has key matching k

² N cells have been unsuccessfully probed

q If a cell has key matching k, we update the value for this cell to v

q Else if a cell labeled AVAILABLE was encountered we  store entry (k, v) there.

q Else if an empty cell was encountered we store entry (k, v) there

q Else if N cells were probed unsuccessfully we throw an exception.
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Open Addressing:  Double Hashing
Ø Double hashing is an alternative open addressing method that uses 

a secondary hash function h’(k) in addition to the primary hash 
function h(x). 

Ø Suppose that the primary hashing i=h(k) leads to a collision.

Ø We then iteratively probe the locations
(i + jh’(k)) mod N  for j = 0,1, … , N - 1

Ø The secondary hash function h’(k) cannot have zero values

Ø Choose N to be prime.

Ø Common choice of secondary hash function h’(k): 
q h’(k) = q - k mod q, where

² q < N

² q is a prime

Ø The possible values for h’(k) are
1, 2, … , q
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Open Addressing:  Double Hashing
Ø Potential problem:  depending upon the relative values of N and 

h’(k), not all locations may be probed.

Ø Example: N = 12, h’(k) = 6.  Suppose primary hash i = h(k) = 2.

Ø To avoid this problem, we need to ensure that none of the N probed 
locations repeat, i.e., we require:

0 1 2 3 4 5 6 7 8 9 10 11
31 41 18 32 59 73 22 44

Probed Locations

! + #ℎ′(') mod , ≠ ! + #.ℎ. ' mod ,,where 0 ≤ # < #. < ,
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Open Addressing:  Double Hashing

Ø In other words, we require

Ø This will be true if h’(k) and N are relatively prime, i.e., share no common factors.

Ø We have ensured this by making N prime.  However this has downsides:
q Modulo operations tend to be less efficient.

q Have to search for prime numbers

Ø More common to make N a power of 2.
q Makes modulo operations very efficient.

q No searching for special numbers required.

Ø Q: If N is a power of 2, how can we ensure that h’(k) and N are relatively prime?

Ø A:  Make h’(k) odd!

!ℎ# $ ≠ &', ∀ !, & ∈ 1, 2, … , ' − 1,! ≠ &

/ + 1ℎ′($) mod ' ≠ / + 1#ℎ# $ mod ',where 0 ≤ 1 < 1# < '
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Open Addressing:  Double Hashing (Revised)

Ø Select N to be a power of 2.

Ø Let h’(k) be a random odd integer, 0 < h’(k) < N, e.g., 
q h’(k) = 2 * Random.nextInt(N/2) + 1, 

where Rand.nextInt(n) generates a pseudo-random integer in the range 0…n-1.
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Ø Consider a hash table 
storing integer keys that 
handles collision with 
double hashing
q N = 13

q h(k) = k mod 13

q h’(k) = 7 - k mod 7

Ø Insert keys 18, 41, 22, 
44, 59, 32, 31, 73

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12
31 41 18 32 59 73 22 44

k h(k) h'(k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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Performance of Hashing
Ø In the worst case, searches, insertions and removals on a hash table 

take O(n) time

Ø The worst case occurs when all the keys inserted into the map collide

Ø The load factor λ = n/N affects the performance of a hash table
q For separate chaining, performance is typically good for λ < 0.9.

q For open addressing , performance is typically good for λ < 0.5.

q java.util.HashMap maintains λ < 0.75

Ø Open addressing can be more memory efficient than separate chaining, 
as we do not require a separate data structure.

Ø However, separate chaining is typically as fast or faster than open 
addressing.
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Rehashing

Ø When the load factor λ exceeds threshold, the table must 
be rehashed.

q A larger table is allocated (typically at least double the size).

q A new hash function is defined.

q All existing entries are copied to this new table using the new 
hash function.
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Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps
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Multimap ADT
Ø The Multimap ADT is identical to 

the Map ADT, but allows 
entries with the same key.

Ø Multimaps are also sometimes 
known as dictionaries.

Ø As for maps, the main 
operations are searching, 
inserting, and deleting items

Ø Applications:

q word-definition pairs

Ø Dictionary ADT methods:

q get(k): if the dictionary has at 
least one entry with key k, 
returns one of them, else, returns 
null 

q getAll(k): returns an iterable
collection of all entries with key k

q put(k, v): inserts and returns the 
entry (k, v) 

q remove(e): removes and returns 
the entry e. Throws an exception 
if the entry is not in the 
dictionary.

q entrySet(): returns an iterable
collection of the entries in the 
dictionary

q size(), isEmpty()
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Multimaps and Java

Ø Note:  The java.util.Dictionary class actually implements 
a map ADT.

Ø There is no multimap data structure in the Java 
Collections Framework that supports multiple entries 
with equal keys.

Ø The textbook (Ch. 10.5.3) sketches an implementation of 
a multimap based upon a map of keys, each entry of 
which supports a List of entries with the same key.
q Note: There are some errors in the textbook java 

implementation of the multimap – please ignore Code Fragment 
10.17.
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Example
Operation Output Dictionary
put(5,A) (5,A) (5,A)
put(7,B) (7,B) (5,A),(7,B)
put(2,C) (2,C) (5,A),(7,B),(2,C)
put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
get(7) (7,B) (5,A),(7,B),(2,C),(8,D),(2,E)
get(4) null (5,A),(7,B),(2,C),(8,D),(2,E)
get(2) (2,C) (5,A),(7,B),(2,C),(8,D),(2,E)
getAll(2) (2,C),(2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
size() 5 (5,A),(7,B),(2,C),(8,D),(2,E)
remove(get(5)) (5,A) (7,B),(2,C),(8,D),(2,E)
get(5) null (7,B),(2,C),(8,D),(2,E)
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Subtleties of remove(e)
Ø remove(e) will remove an entry that matches e (i.e., has 

the same (key, value) pair).

Ø If the dictionary contains more than one entry with 
identical (key, value) pairs, remove(e) will only remove 
one.

Ø Example:
Operation Output Dictionary
e1 = put(2,C) (2,C) (5,A),(7,B),(2,C)
e2 = put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
e3 = put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
remove(get(5)) (5,A) (7,B),(2,C),(8,D),(2,E)
remove(e3) (2,E) (7,B),(2,C),(8,D)
remove(e1) (2,C) (7,B),(8,D)
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A List-Based Multi-Map (Dictionary)

Ø A log file or audit trail is a dictionary implemented by means of an 
unsorted sequence

q We store the items of the dictionary in a sequence (based on a doubly-
linked list or array), in arbitrary order

Ø Performance:

q insert takes O(1) time since we can insert the new item at the beginning or 
at the end of the sequence

q find and remove take O(n) time since in the worst case (the item is not 
found) we traverse the entire sequence to look for an item with the given 
key

Ø The log file is effective only for dictionaries of small size or for 
dictionaries on which insertions are the most common operations, while 
searches and removals are rarely performed (e.g., historical record of 
logins to a workstation)
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Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps 
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Ordered Maps and Dictionaries
Ø If keys obey a total order relation, can represent a map or 

dictionary as an ordered search table stored in an array.

Ø Can then support a fast find(k) using binary search.
q at each step, the number of candidate items is halved

q terminates after a logarithmic number of steps

q Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h
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Ordered Search Tables
Ø Performance:

q find takes O(log n) time, using binary search

q insert takes O(n) time since in the worst case we have to shift n
items to make room for the new item

q remove takes O(n) time since in the worst case we have to shift n
items to compact the items after the removal

Ø A search table is effective only for dictionaries of small size or 
for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations)
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Outline

Ø Maps

Ø Hashing

Ø Multimaps

Ø Ordered Maps 
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Learning Outcomes
By understanding this lecture, you should be able to:

Ø Outline the ADT for a map and a multimap

Ø Identify applications for which maps, multimaps and ordered maps are 
appropriate

Ø Design and implement a map in java and verify that it satisfies the 
requirements of the map ADT

Ø Explain the purpose of hash tables

Ø Design and implement hashing methods using separate chaining or open 
addressing and a variety of hashing and double-hashing functions

Ø Specify worst-case and average-case asymptotic run-times for standard 
operations on maps based upon hash tables

Ø Specify (worst-case) asymptotic run-times for standard operations on sorted 
maps


